Le plan dialectique: pour une alternative au paradigme

Le plan dialectique: pour une alternative au paradigme

Paul Franceschi

Université de Corse

 

Dans Franceschi (2002), j’ai présenté une théorie qui se propose de constituer une alternative à la classification proposée par Greimas dans le domaine de l’analyse paradigmatique. Dans le présent article, je m’attache à tirer les conséquences de cette théorie en l’appliquant à la technique de conception de plan. En matière de plan dialectique, le paradigme actuel est en effet le plan du type thèse-antithèse-synthèse. Cette forme de plan est largement répandue et son usage se révèle consensuel. Dans ce qui suit, je présenterai un nouveau type de plan dialectique, qui se propose de constituer une alternative au plan dialectique classique. Il s’agit d’un  type de plan que l’on peut qualifier de matriciel, et qui présente plusieurs avantages par rapport au plan classique.

 

Le plan dialectique classique

 

Le paradigme actuel en matière de plan dialectique est un plan du type thèse-antithèse-synthèse[1]. Ce plan trouve son origine dans l’approche dialectique[2] développée par Hegel. La triple association de concepts sous la forme de thèse-antithèse-synthèse, désormais associée au mouvement dialectique de la pensée, a été élaborée par Hegel et Marx[3]. La dialectique constitue ainsi un processus de raisonnement qui procède par l’énoncé de deux thèses contradictoires et par leur réconciliation au stade de la synthèse. Pour Hegel[4], toute thèse présente en soi une nature incomplète, partielle, qui donne ainsi naissance à son contraire, l’antithèse. Selon Hegel, les contraires présentent, au-delà de la contradiction qui les sous-tend, une nature indissociable. Cette dernière propriété permet ainsi de réaliser leur union finale, à un niveau de la pensée qui se situe au-delà de celui où se manifeste la contradiction. Les contraires présentent ainsi par essence une véritable unité, dont il convient de capturer le principe fécond, permettant ainsi de parvenir, à un niveau supérieur, à une authentique connaissance. Cette dernière phase constitue la synthèse, qui peut ainsi être considérée comme l’étape du raisonnement qui réconcilie véritablement, à un niveau supérieur, la contradiction née entre la thèse et l’antithèse. La synthèse permet ainsi de surmonter le conflit apparu entre la thèse et l’antithèse, en unifiant ultérieurement la part de vérité contenue à la fois dans chacune d’entre elles. Mais le processus toutefois ne se limite pas à cela. Car la synthèse ainsi obtenue constitue à son tour une nouvelle thèse, qui elle-même donne lieu à une nouvelle antithèse puis à une nouvelle synthèse, et ainsi de suite… Dans le langage courant, l’approche dialectique désigne désormais la méthodologie générale qui permet de surmonter et de résoudre les contradictions. C’est dans cette approche dialectique que le plan classique du type thèse-antithèse-synthèse trouve son origine.

A ce stade, il convient de s’intéresser tour à tour à chacun des composants du plan thèse-antithèse-synthèse. Considérons en premier lieu la thèse. Cette dernière constitue un point de vue exprimé par un auteur. Il s’agit du point de vue sur lequel porte la discussion, et vers lequel la structure du plan se trouve orientée. Par simplification, on peut assimiler ici la thèse à une proposition donnée. En second lieu, l’antithèse est un point de vue qui se révèle contraire à celui de la thèse. De même que la thèse, il est utile de réduire l’antithèse, dans un but de simplification, à une proposition. A ce stade, les points de vue exprimés par la thèse et l’antithèse présentent une nature antinomique. Enfin, la synthèse constitue la partie du discours où les points de vue antagonistes développés dans la thèse et l’antithèse font l’objet d’un dépassement. La synthèse vise ainsi classiquement à s’élever au-delà de l’antinomie existant entre la thèse et l’antithèse et à la surpasser.

D’une manière générale, l’intérêt du plan dialectique de type thèse-antithèse-synthèse est de permettre d’appréhender le double aspect d’un problème ou d’une réalité donnée. En se plaçant alternativement d’un côté puis de l’autre, en envisageant successivement la thèse puis l’antithèse, ce type de plan évite une vision partielle ou tronquée du problème particulier posé par la thèse. La finalité du plan dialectique classique est ainsi d’appréhender la double nature d’une même réalité et de dépasser la contradiction qui résulte d’une étude préliminaire.

 

Matrices de concepts

 

Dans Franceschi (2002), j’ai décrit une structure qui est celle d’une matrice de concepts, dont le champ d’application s’étend à un nombre important de concepts. Pour les besoins de la présente discussion, il n’est pas utile de reprendre en détail la description de la structure de concepts présentée dans cet article. Toutefois, le type de plan dialectique qui sera proposé plus loin dérive directement de la notion de matrice de concepts. Il s’avère donc nécessaire de présenter les lignes essentielles de la structure de base qui est celle d’une matrice de concepts.

Considérons tout d’abord une dualité donnée. Dénotons-la par A/Ā. A ce stade, A et Ā constituent des concepts duaux. On peut considérer ainsi que A et Ā sont des concepts qui se caractérisent par une composante contraire c Î {-1, 1} au niveau d’une dualité A/Ā, telle que c[A] = -1 et c[Ā] = 1. On peut considérer également que A et Ā sont des concepts neutres qui peuvent ainsi être dénotés par A0 et Ā0.

A ce stade, on est à même de définir la classe des pôles canoniques. Il suffit de considérer une extension de la classe précédente {A0, Ā0}, telle que A0 et Ā0 admettent respectivement à la fois un concept positif et négatif qui leurs sont corrélatifs. De tels concepts possèdent un certain support intuitif. Dénotons-les respectivement par {A+, A} et {Ā+, Ā}. A ce stade, pour une dualité A/Ā donnée, on obtient les concepts suivants: {A+, A0, A, Ā+, Ā0, Ā}, qui constituent les pôles canoniques. Il convient de mentionner ici que l’on peut utiliser de manière alternative la notation a(A/Ā, cp) pour un pole canonique[5]. Dans tous les cas, les composants d’un pôle canonique sont: une dualité A/Ā, une composante contraire c Î {-1, 1} et une polarité canonique p Î {-1, 0, 1}. Cette définition des pôles canoniques conduit à distinguer entre les pôles canoniques positifs (A+, Ā+), neutres (A0, Ā0) et négatifs (A, Ā). Enfin, la classe constituée par les six pôles canoniques d’une même matrice peut être dénommée matrice canonique: {A+, A0, A, Ā+, Ā0, Ā}.

Intéressons-nous maintenant à la nature des relations existant entre les pôles canoniques d’une matrice donnée. Parmi les combinaisons de relations existant entre les six pôles canoniques (A+, A0, A, Ā+, Ā0, Ā) d’une même dualité A/Ā, on retiendra les relations suivantes: dualité, antinomiecomplémentaritécorollaritéconnexitéanti-connexité. Ainsi, deux pôles canoniques a1(A/Ā, c1p1) et a2(A/Ā, c2p2) d’une même matrice sont:

 

(a) duaux si leurs composantes contraires sont opposées et leurs polarités sont neutres[6]

(b) contraires (ou antinomiques) si leurs composantes contraires sont opposées et leurs polarités sont non-neutres et opposées[7]

(c) complémentaires si leurs composantes contraires sont opposées et leurs polarités sont non-neutres et égales[8]

(d) corollaires si leurs composantes contraires sont égales et leurs polarités sont non-neutres et opposées[9]

(e) connexes si leurs composantes contraires sont égales et la valeur absolue de la différence de leurs polarités est égale à 1[10]

(f) anti-connexes si leurs composantes contraires sont opposées et la valeur absolue de la différence de leurs polarités est égale à 1[11]

 

Résumons: {A0, Ā0} sont duaux; {A+, Ā} et {A, Ā+} sont contraires; {A+, Ā+} et {A, Ā} sont complémentaires; {A+, A} et {Ā+, Ā} sont corollaires; {A0, A+}, {A0, A}, {Ā0, Ā+} et {Ā0, Ā} sont connexes; {A0, Ā+}, {A0, Ā}, {Ā0, A+} et {Ā0, A} sont anti-connexes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pour fixer les idées, prenons l’exemple de la matrice[12] {éclectisme+pluridisciplinarité0dispersionexpertise+mono-disciplinarité0cloisonnement}. On a alors les relations suivantes:

 

(a’)  {pluridisciplinarité0mono-disciplinarité0} sont duaux

(b’)  {éclectisme+cloisonnement}, {dispersionexpertise+} sont antinomiques

(c’)  {éclectisme+expertise+}, {dispersioncloisonnement} sont complémentaires

(d’)  {éclectisme+dispersion}, {expertise+cloisonnement} sont corollaires

(e’)  {pluridisciplinarité0éclectisme+}, {pluridisciplinarité0dispersion}, {mono-disciplinarité0expertise+}, {mono-disciplinarité0cloisonnement} sont connexes

(f’)   {pluridisciplinarité0expertise+}, {pluridisciplinarité0cloisonnement}, {mono-disciplinarité0éclectisme+}, {mono-disciplinarité0dispersion} sont anti-connexes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structure d’une thèse

 

A ce stade, il est nécessaire de s’attacher à analyser de manière plus approfondie la structure interne de la thèse à laquelle s’applique le plan dialectique. On distinguera ici entre les thèses simples et les thèses composées.

 

Thèses simples

En règle générale, une thèse simple présente une structure qui est celle d’une appréciation – négative, neutre ou positive – relative à un concept donné. Soit a un tel concept; on dénote alors par zp(a) une telle structure de thèse, où p dénote une polarité négative, neutre ou positive telle que respectivement p Î {-1, 0, 1}. L’appréciation négative peut être assimilée à un blâme et l’appréciation positive à un éloge. Le blâme d’un concept a donné est ainsi dénoté par z(a), l’appréciation neutre par z0(a) et l’éloge par z+(a). D’une manière générale, les propositions correspondant aux thèses simples présentent la structure suivante: zp(a), avec p Î {-1, 0, 1} et  a Î {A+, A0, A, Ā+, Ā0, Ā}. En se référant à la notion de matrice, on constate que les différents cas de figure théoriques sont les suivants, par rapport aux six concepts d’une même matrice: {z(A+), z(A0), z(A), z+), z0), z), z0(A+), z0(A0), z0(A), z0+), z00), z0), z+(A+), z+(A0), z+(A), z++), z+0), z+)}. A ce stade, il apparaît que l’appréciation neutre se rencontre assez rarement. Ainsi, par souci de simplification, on s’attachera ici à décrire essentiellement de manière plus précise les thèses qui présentent la structure d’un blâme ou d’un éloge.

Commençons tout d’abord par le blâme. Un certain nombre de thèses comportent ainsi une appréciation dévalorisante, dépréciative, par rapport à un comportement, une manière d’agir ou d’appréhender les choses, une situation donnée. De tels énoncés correspondent à des propositions présentant la structure d’un blâme. On dénote de telles propositions par z(s) où s désigne une manière de considérer les choses ou d’agir.

Considérons, pour fixer les idées, quelques exemples. Soit la thèse suivante:

 

(1)   C’est dans le mépris de l’ambition que doit se trouver l’un des principes essentiels du bonheur sur la terre. (Edgar Poe, Le domaine d’Arneihm)

 

Ici, l’auteur considère le ‘mépris de l’ambition’ comme un principe essentiel permettant de parvenir au bonheur. Un tel point de vue s’analyse comme un jugement négatif, dépréciatif vis-à-vis de l’ambition. Ce dernier concept peut être considéré comme une notion neutre[13]. Ainsi, une telle thèse simple présente-t-elle une structure qui est celle du blâme de l’ambition0 et peut être ainsi dénotée par z(ambition0).

Soit également cette autre thèse:

 

(2)   Amour, fléau du monde, exécrable folie. (Alfred de Musset, Premières poésies)

 

Le contenu de cette dernière thèse s’analyse comme une appréciation très péjorative formulée à l’égard de l’amour+. Là aussi, une telle thèse présente une structure qui constitue un blâme de l’amour+, que l’on peut ainsi dénoter par z(amour+).

A l’inverse, on rencontre également fréquemment des thèses qui comportent une appréciation flatteuse par rapport à un comportement, une propension à agir, une situation ou une manière d’appréhender les choses. La structure de la proposition correspondante est alors celle d’un éloge. On dénote de telles propositions par z+(s) où s désigne une façon de considérer les choses ou un comportement donnés.

Considérons quelques exemples. Le point de vue suivant illustre tout d’abord ce type de structure:

 

(3)   Rien de grand ne s’est accompli dans le monde sans passion. (Hegel, Introduction à la philosophie de l’Histoire)

 

L’auteur formule ici une louange vis-à-vis de la passion, considérant ainsi que ‘rien de grand’ n’a pu être accompli sans cette dernière. On peut considérer ici la passion comme une notion neutre[14]. Un tel point de vue présente ainsi la structure d’un éloge de lapassion0, soit formellement z+(passion0).

On rencontre également un type de structure identique, au niveau de l’affirmation suivante:

 

(4)   La passion est une maladie qui exècre toute médication. (Kant)

 

qui s’analyse en un blâme de la passion0, c’est-à-dire de manière formelle z( passion0).

Enfin, la thèse simple suivante:

 

(5) Ce qu’il y a de pire chez le fanatique, c’est la sincérité. (Oscar Wilde)

 

constitue un exemple d’éloge du concept négatif de fanatisme, c’est-à-dire formellement z+(fanatisme).

A ce stade, on constate que l’on est à même de déterminer la valeur de vérité de chacune des thèses simples. La valeur de vérité de chaque type d’éloge, d’appréciation neutre ou de blâme indique si l’affirmation envisagée est vraisemblable et cohérente ou non, sachant que l’éloge d’un concept positif est vrai, de même que l’appréciation neutre d’un concept neutre et le blâme d’un concept négatif. A l’inverse, l’éloge d’un concept non positif[15]l’appréciation neutre d’un concept non neutre ou bien le blâme d’un concept non négatif[16] sont faux. De manière formelle, la valeur de vérité [v] des propositions du type P = zp(aq), avec pq Î {-1, 0, 1} et  a Î {A+, A0, A, Ā+, Ā0, Ā} se calcule de la manière suivante: [v] = 1 (vrai) si p = q et [v] = -1 (faux) si p ¹ q[17]. Ainsi, parmi les différents cas qui viennent d’être énumérés, ceux dont la valeur de vérité est vrai sont: {z(A), z), z0(A0), z00), z+(A+), z++)}. Et ceux dont la valeur de vérité est faux sont: {z(A+), z(A0), z+), z0), z0(A+), z0(A), z0+), z0), z+(A0), z+(A), z+0), z+)}.

 

Thèses composées

Alors que les thèses simples contiennent un jugement formulé vis-à-vis d’un seul concept appartenant à une matrice donnée, les thèses composées comportent des appréciations relatives à plusieurs concepts d’une même matrice. Une thèse composée peut ainsi être définie de manière générale comme la conjonction de plusieurs thèses simples. Une thèse composée peut ainsi comporter des appréciations relatives à deux, trois, …, n concepts différents. On utilisera alors le terme de thèse n-composée. Dans ces hypothèses, les combinaisons s’avèrent nombreuses, sans qu’il soit toutefois nécessaire de les énumérer de manière exhaustive. Une proposition P constituant une thèse composée présente ainsi la structure suivante: P = Q1 Ù Q2 Ù … Ù Qn, pour n > 1, et Qi = zpi(aqi), avec piqi Î{-1, 0, 1} et  a Î {A+, A0, A, Ā+, Ā0, Ā}. On a ainsi les thèses 2-composées, 3-composées, …, n-composées.

A ce stade, il apparaît nécessaire de s’intéresser en premier lieu aux thèses 2-composées, qui constituent, parmi les thèses composées, le cas le plus fréquent. Les thèses 2-composées comportent des appréciations relatives à deux concepts d’une même matrice. Elles présentent la structure: zp(a1(A/Ā, c1q)) Ù zr(a2(A/Ā, c2s)). L’appréciation suivante constitue ainsi un exemple de thèse 2-composée:

 

(6)   Toute théorie est grise, mais vert et florissant est l’arbre de la vie. (Goëthe)

 

Cette thèse 2-composée comporte en effet à la fois le blâme de la théorie (‘toute théorie est grise’) et l’éloge du pragmatisme (‘vert et florissant est l’arbre de la vie’). Il s’avère ici que les concepts d’intérêt pour la théorie et de pragmatisme appartiennent à la matrice suivante: {capacité d’abstraction+intérêt pour la théorie0dogmatismepragmatisme+intérêt pour la pratique0prosaïsme}. La structure de la thèse est ainsi z(intérêt pour la théorie0) Ù z+(pragmatisme+) soit z(A0) Ù z++).

De même, l’appréciation suivante constitue un cas de thèse 2-composée:

 

(7)   L’art d’être tantôt très audacieux et tantôt très prudent est l’art de réussir. (Napoléon Bonaparte)

 

Cette thèse 2-composée comporte à la fois l’éloge de l’audace (‘l’art d’être (…) très audacieux (…) est l’art de réussir’) et l’éloge de la prudence (‘l’art d’être (…) très prudent est l’art de réussir’). Il apparaît que ces derniers concepts appartiennent à la matrice suivante: {audace+propension à prendre des risques0téméritéprudence+propension à éviter les risques0lâcheté}. La thèse comporte donc ici l’éloge des deux concepts positifs complémentaires d’une même matrice. La structure particulière de ce type de thèse composée comporte donc l’éloge de A+ et l’éloge de Ā+, soit formellement z+(audace+) Ù z+(prudence+).

Soit enfin la thèse suivante, qui constitue également un cas de thèse 2-composée:

 

(8) Deux excès: exclure la raison, n’admettre que la raison. (Pascal, Les Pensées)

 

Cette dernière thèse comporte en effet à la fois le blâme de l’irrationalité (‘exclure la raison’) et le blâme de l’hyper-rationalisme (‘n’admettre que la raison’). La matrice correspondante reconstituée est la suivante: {imagination+inspiration0irrationalitérationalité+raison0hyper-rationalisme}. On le voit, il s’agit là d’une thèse 2-composée dont la structure est z(irrationalité) Ù z(hyper-rationalisme) soit z(A) Ù z).

 

Enfin, la thèse 2-composée suivante:

 

(9) Comment souffrir que la passion soit mise au même rang que la raison? (Sénèque, De la colère)

 

s’analyse en un blâme de la passion0 et un éloge de la raison0, c’est-à-dire formellement z(passion0) Ù  z+(raison0), soit z(A0) Ù z+0) au niveau de la matrice {motivation+passion0fanatismepondération+raison0tiédeur}.

On peut observer ici que ce dernier type de thèse 2-composée correspond à un cas fréquent, pour des raisons de cohérence interne. Il est en effet logique lorsqu’on critique ou déprécie telle valeur ou tel concept, de flatter son contraire. Blâmer telle chose revient naturellement à faire l’éloge de son opposé, et inversement. Pour cette raison, les thèses 2-composées dont la structure particulière est z(A) Ù z++) ou bien z+(A+) Ù z) constituent également, parmi toutes les combinaisons possibles de thèses 2-composées, un cas courant.

En ce qui concerne la valeur de vérité des thèses 2-composées, elle se détermine de la même manière que pour les thèses simples. Soit ainsi P Ù Q une thèse 2-composée, telle que P = zp(aq) et Q = zr(bs), avec pqrs Î {-1, 0, 1} et  a, b Î {A+, A0, A, Ā+, Ā0, Ā}. De manière formelle, la valeur de vérité [v] d’une thèse 2-composée P Ù Q est vrai si v[P] = v[Q] = vrai, et faux dans les autres cas[18]. Il est à noter que les types les plus courants de thèses 2-composées sont ceux dont la valeur de vérité est vrai. Tel est le cas lorsque la valeur de vérité de chacune des deux propositions contenues dans la thèse composée est vrai. Dans cette hypothèse, les deux propositions se renforcent. Il s’agit ainsi des cas correspondant à: {z+(A+) Ù z(A), z+(A+) Ù z++), z+(A+) Ù z), z(A) Ùz++), z(A) Ù z), z++) Ù z)}.

 

Thèses duales

 

A ce stade, il convient de s’intéresser à la notion de thèse duale d’une thèse donnée. Cette dernière notion s’applique à la fois aux thèses simples et aux thèses composées. La thèse duale constitue ici un élément de la discussion dialectique, qui se révèle importante car elle sert de fondement à la discussion relative à la thèse considérée.

Intéressons-nous, en premier lieu, aux thèses duales des thèses simples. Commençons tout d’abord par en donner une définition générale. De manière formelle, une thèse simple zp(a1(A/Ā, cq)) possède une thèse duale qui répond à la définition suivante: zp(a2(A/Ā, –cq)). Ainsi, une thèse duale d’une thèse simple présente les caractéristiques suivantes: (i) les polarités de l’appréciation de la thèse duale et de la thèse simple sont identiques; (ii) les composantes contraires des concepts sur lesquels portent les appréciations de la thèse duale et de la thèse simple sont opposées; (iii) les polarités des concepts sur lesquels portent les appréciations de la thèse duale et de la thèse simple sont identiques.

On considérera tout d’abord les thèses duales des thèses simples vraies. Les types de thèses simples vraies peuvent être ainsi énumérés: {z+(A+), z0(A0), z(A), z++), z00), z)}. De manière formelle, une thèse simple vraie zp(a1(A/Ā, cp)) présente un thèse duale qui répond à la définition suivante: zp(a2(A/Ā, –cp)). Ainsi, les thèses duales des thèses simples vraies sont respectivement: {z++), z00), z), z+(A+), z0(A0), z(A)}.

Considérons, à titre d’exemple, la thèse simple vraie suivante:

 

(10) Quoi que tu rêves d’entreprendrecommence-le. L’audace a du génie, du pouvoir, de la magie. (Goethe)

 

qui présente la structure z+(audace+) soit z+(A+) au niveau de la matrice {audace+propension à prendre des risques0téméritéprudence+propension à éviter les risques0lâcheté}. La thèse ci-dessous dont la structure est z+(prudence+) soit z++) constitue ainsi sa thèse duale:

 

(11) La prudence surpasse les autres vertus comme la vue surpasse les autres sens. (Bion de Phlossa)

 

Considérons également les thèses duales des thèses simples fausses. Les types de thèses simples fausses sont: {z(A+), z(A0), z+), z0), z0(A+), z0(A), z0+), z0), z+(A0), z+(A), z+0), z+)}. Et les thèses duales des thèses simples fausses sont respectivement: {z+), z0), z(A+), z(A0), z0+), z0), z0(A+), z0(A), z+0), z+), z+(A0), z+(A)}.

A titre d’exemple, la thèse simple fausse suivante:

 

(4)   La passion est une maladie qui exècre toute médication. (Kant)

 

présente la structure z(passion0) soit z(A0) au niveau de la matrice {motivation+passion0fanatismepondération+raison0tiédeur}. La thèse suivante dont la structure est z(raison0) soit z0) constitue ainsi sa thèse duale:

 

(12) Si la raison dominait sur la terre, il ne s’y passerait rien. (Bernard Fontenelle)

 

Il convient désormais de s’intéresser, en second lieu, aux thèses duales des thèses composées. Ces dernières sont telles que les composantes contraires des concepts sur lesquels portent les appréciations des deux thèses simples composant la thèse duale et de la thèse considérée sont opposées[19]. Considérons ainsi les thèses 2-composées vraies. Ainsi, la thèse duale de z+(A+) Ù z) est z++) Ù z(A). Et de même, la thèse duale de z0(A0) Ù z+(A+) est z00) Ù z++). On notera ici en particulier que la thèse duale de z0(A0) Ù z00) est z00) Ù z0(A0), que la thèse duale de z+(A+) Ù z++) est z+ +) Ù z+(A+) et que la thèse duale z(A) Ù z) est z(A) Ù z).

Donnons également quelques exemples. Ainsi, la thèse 2-composée vraie correspondant à la proposition suivante:

 

(6)   Toute théorie est grise, mais vert et florissant est l’arbre de la vie. (Goëthe)

 

présente la structure z(A0) Ù z++) c’est-à-dire z(intérêt pour la théorie0) Ù z+(pragmatisme+) au niveau de la matrice {capacité d’abstraction+intérêt pour la théorie0dogmatismepragmatisme+intérêt pour la pratique0prosaïsme}. La thèse suivante dont la structure est z0) Ù z+(A+) soit z(intérêt pour la pratique0) Ù z+(capacité d’abstraction+)  constitue donc sa thèse duale:

 

(13) Toute pratique est vile, mais féconde et élevée est la quête de l’abstraction véritable.

 

De manière similaire, la proposition suivante:

 

(8) Deux excès: exclure la raison, n’admettre que la raison. (Pascal, Les Pensées)

 

constitue une thèse 2-composée vraie dont la structure est z(irrationalité) Ù z(hyper-rationalisme) soit z(A) Ù z) au niveau de la matrice: {imagination+inspiration0irrationalitérationalité+raison0hyper-rationalisme}. La thèse ci-dessous dont la structure est z+(imagination+) Ù z+(rationalité+) soit z+(A+) Ù z++) constitue ainsi sa thèse duale:

 

(14) L’art d’être tantôt très imaginatif et tantôt très rationnel est l’art de réussir.

 

 

Il convient de noter enfin que l’on a également des définitions analogues pour les thèses 3-composées, 4-composées, etc. Ainsi, à titre d’exemple, la thèse duale de la thèse 3-composée z+(A+) Ù z0(A0) Ù z00) est z++) Ù z00) Ù z0(A0). De même, la thèse duale de la thèse 3-composée z+(A+) Ù z0(A0) Ù z(A) est z++) Ù z00) Ù z).

 

Plan dialectique matriciel

 

Les développements qui précèdent permettent maintenant de décrire les étapes du raisonnement dialectique applicable à l’analyse d’une thèse particulière donnée, à partir des principes qui viennent d’être définis. La première étape consiste ainsi dans la détermination précise de la structure de la thèse considérée. La seconde étape, qui en résulte directement, est l’attribution d’une valeur de vérité à cette dernière. L’étape suivante consiste alors dans la reconstitution de la matrice complète applicable au(x) concept(s) qui font l’objet de la thèse. On est alors à même de déterminer la thèse duale de la thèse considérée ainsi que les thèses simples vraies autres que la thèse étudiée et sa thèse duale. Enfin, l’étape finale est la synthèse qui consiste dans la conjonction des thèses simples vraies relatives à chacun des 6 concepts de la matrice considérée: z+(A+) Ù z0(A0) Ù z(A) Ù z++) Ù z00) Ù z). Une telle synthèse permet de dépasser une triple antinomie: celle existant entre A+ et Ā, A0 et Ā0, et A et Ā+. On peut observer ici que l’on peut éventuellement ne retenir de la synthèse qu’une forme simplifiée consistant dans la conjonction des thèses simples vraies constituant un éloge ou un blâme: z+(A+) Ù z(A) Ù z++) Ù z). De même, on pourra parfois se contenter d’une forme tronquée de synthèse consistant en z+(A+) Ù z++), qui met l’accent sur la complémentarité entre A+ et Ā+ [20].

A ce stade, nous sommes désormais en mesure de présenter le plan dialectique matriciel. Un tel plan résulte directement de la structure de matrice de concepts qui vient d’être décrite. Le plan dialectique matriciel correspondant présente ainsi la structure suivante[21]:

 

(15) 1. Du point de vue de A0

1.1 Eloge de A+

1.2 Blâme de A

  1. Du point de vue de Ā0

2.1 Eloge de Ā+

2.2 Blâme de Ā

  1. Complémentarité entre A+et Ā+[22]

 

Considérons à titre d’exemple la thèse simple vraie suivante:

 

(16) Le succès fut toujours un enfant de l’audace. (Prosper Crébillon, Catilina)

 

dont la structure est z+(audace+) soit z+(A+) au niveau de la matrice {audace+propension à prendre des risques0téméritéprudence+propension à éviter les risques0lâcheté}. Il en résulte alors le plan matriciel suivant:

 

(17) 1. Du point de vue de la prise de risques0

1.1 La nécessité de l’audace+

1.2 Les dangers de la témérité

  1. Du point de vue de l’évitement des risques0

2.1 Les avantages de la prudence+

2.2 Le risque de la lâcheté

  1. La nécessaire complémentarité entreaudace+et prudence+

 

Soit également la thèse simple fausse suivante:

 

(12) Si la raison dominait sur la terre, il ne s’y passerait rien. (Bernard Fontenelle)

 

dont la structure est z(raison0). La matrice correspondante est: {pondération+raison0tiédeurmotivation+passion0fanatisme}. Et il en résulte le plan matriciel suivant:

 

(18) Introduction: (i) structure de la thèse; (ii)  valeur de vérité; (iii) matrice

  1. Du point de vue de laraison0

1.1 L’écueil de la tiédeur

1.2 La nécessité de la pondération+

  1. Du point de vue de lapassion0

2.1 Les dangers du fanatisme

2.2 La nécessité de la motivation+

  1. La nécessaire complémentarité entrepondération+et motivation+

 

 

Enfin, un  tel type de plan se révèle également adapté à une thèse 2-composée vraie telle que la suivante:

 

(19) Avant toute chose, il y a d’abord le métier, disait, car bien faire une seule chose procure un plus haut développement que d’en faire à demi une centaine. (Goëthe)

 

Cette dernière thèse s’analyse en une thèse 2-composée dont la structure est z+(expertise+) Ù z(superficialité) soit z+(A+) Ù z) au niveau de la matrice: {expertise+mono-disciplinarité0cloisonnementéclectisme+pluridisciplinarité0superficialité}. Et il en résulte le plan matriciel suivant[23]:

 

(20) 1. Du point de vue de la mono-disciplinarité0

1.1 Les avantages de l’expertise+

1.2 Le risque du cloisonnement

  1.  Du point de vue de la pluridisciplinarité0

2.1 La nécessité de l’éclectisme+

2.2 Les dangers de la superficialité

  1. La nécessaire complémentarité entreexpertise+et éclectisme+

 

 

Conclusion

 

Les développements qui précèdent permettent de constater que le plan dialectique matriciel présente un certain nombre d’avantages par rapport au plan dialectique classique. En premier lieu, l’approche dialectique qui vient d’être décrite effectue tout d’abord une analyse de la structure de la thèse considérée, qui conduit ensuite à lui attribuer une valeur de vérité, selon un fondement objectif.

En second lieu, il apparaît que le plan dialectique matriciel replace la thèse ou la proposition principale dans un contexte qui comprend un plus grand nombre de concepts que le plan dialectique classique. En effet, le plan dialectique classique situe habituellement la thèse dans un environnement comprenant en général deux, voire trois concepts. En revanche, le plan dialectique matriciel replace la thèse dans un contexte comprenant six concepts qui sont liés à cette dernière.

En troisième lieu, un des intérêts du plan dialectique matriciel est qu’il permet également de prendre en compte des concepts qui ne sont pas lexicalisés. En effet, la matrice de concepts décrit six concepts canoniques. Mais il est rare que la totalité de ces derniers soient lexicalisés. En effet, la situation la plus courante est que seuls certains concepts – en général deux ou trois – parmi les six que décrit la matrice correspondante sont lexicalisés. Ici aussi, l’intérêt du plan dialectique matriciel est de permettre la prise en compte exhaustive des six concepts d’une même matrice et de les intégrer dans la discussion correspondante.

On peut noter en outre que le stade de l’antithèse au niveau du plan dialectique classique se trouve remplacé ici par la détermination de la thèse duale, qui présente une structure identique à celle de la thèse initiale. La thèse duale, qui sert ici de base au raisonnement dialectique, présente pas sa structure simple ou bien n-composée une nature plus élaborée que la traditionnelle antithèse.

Enfin, il s’avère que le plan dialectique classique permet de dépasser une antinomie existant entre deux concepts, qui servent respectivement de support à la thèse et à l’antithèse. Il s’agit le plus souvent de A+ et Ā, de A0 et Ā0, ou bien de A et Ā+. La plupart du temps, il s’agit d’une paire duale ou antinomique de concepts qui présentent la propriété d’être lexicalisés. A l’inverse, le plan matriciel constitue l’expression d’un mouvement dialectique de la pensée qui permet de dépasser une triple antinomie: celle existant à la fois entre A+ et Ā, A0 et Ā0, et finalement A et Ā+, que ces concepts soient lexicalisés ou non.

 


Références

Franceschi, Paul (2002). Une classe de concepts. Semiotica 139 (1-4), 211-226.

Hegel, Georg Wilhelm Friedrich (1812-1816). Wissenschaft der Logik. Science de la logique, trad. Bourgeois, Paris, Aubier Montaigne, 1972.

————- (1817). Die Encyclopädie der philosophischen Wissenschaften im Grundrisse. Précis de l’encyclopédie des sciences philosophiques, trad. J. Gibelin. Vrin, Paris, 1978


Notes

 

[1] On trouve également la variante antithèse-thèse-synthèse.

[2] Platon envisageait la dialectique sous la forme d’un dialogue entre deux interlocuteurs, basé sur l’alternance de questions et de réponses. On trouve également une approche dialectique chez Kant, mais également Fichte et Schelling.

[3] Dans le contexte du matérialisme dialectique, la dialectique trouve son expression sur le terrain social, à travers le conflit ou la lutte, qui constituent la manifestation sur le plan matériel de la contradiction. Du dépassement de ce conflit naît le progrès historique, l’avancée sociale. Pour Marx également, la dialectique objective se situe véritablement au niveau de la réalité, trouvant ainsi son expression dans les faits et les phénomènes. A l’inverse, le mouvement dialectique observé au niveau de la pensée humaine ne constitue que le reflet subjectif de la dialectique fondamentale, une simple transposition de cette dernière au niveau du cerveau humain.

[4] Cf. (1812-1816) et (1817).

[5] Avec cette dernière notation, la matrice des pôles canoniques est restituée de la manière suivante: {a(A/Ā, -1, 1), a(A/Ā, -1, 0), a(A/Ā, -1, -1), a(A/Ā, 1, 1), a(A/Ā, 1, 0), a(A/Ā, 1, -1)}.

[6] Formellement a1 et a2 sont duaux si et seulement si c[a1] = – c[a2] and p[a1] = p[a2] = 0.

[7] Formellement a1 et a2 sont antinomiques si et seulement si c[a1] = – c[a2] et p[a1] = – p[a2] avec p[a1], p[a2] ¹ 0.

[8] Formellement a1 et a2 sont complémentaires si et seulement si c[a1] = – c[a2] et p[a1] = p[a2] avec p[a1], p[a2] ¹ 0.

[9] Formellement a1 et a2 sont corollaires si et seulement si c[a1] = c[a2] et p[a1] = – p[a2] avec p[a1], p[a2] ¹ 0.

[10] Formellement a1 et a2 sont connexes si et seulement si c[a1] = c[a2] et │p[a1] – p[a2]│ = 1.

[11] Formellement a1 et a2 sont anti-connexes si et seulement si c[a1] = – c[a2] et │p[a1] – p[a2]│ = 1.

[12] Pour une liste plus complète de matrices de concepts, cf. Franceschi (2002).

[13] L’ambition pouvant être réalisatrice (ambition+) ou bien excessive, voire démesurée (ambition).

[14] Une passion pouvant être réalisatrice (passion+) ou bien excessive, destructrice (passion).

[15] Négatif ou neutre.

[16] Positif ou neutre.

[17] On pourrait bien sûr distinguer ici des degrés de valeur de vérité, en utilisant des degrés d’appréciation, avec p Î [-1, 1]. Il en résulterait ainsi une approche par degré de la valeur de vérité, en calculant ainsi cette dernière par rapport à la valeur absolue de la différence entre p et q: [v] = 1- |(p – q)/2|.

[18] Une telle définition se généralise pour la détermination des valeurs de vérité des thèses 3-composées, …, n-composées.

[19] De manière formelle, soit ainsi P Ù Q une thèse 2-composée, telle que P = zp1(a1(A/Ā, c1, q1)) et Q = zP2(a2(A/Ā, c2, q2), avec p1, p2, q1, q2 Î {-1, 0, 1}, c1, c2 Î {-1, 1} et  a, b Î {A+, A0, A, Ā+, Ā0, Ā}; alors la thèse duale de P Ù Q est de la forme: zp1(a1 (A/Ā, –c1, q1)) Ù zP2(a2(A/Ā, –c2, q2). Une telle définition se généralise aisément aux thèses duales des thèses n-composées.

[20] La description des différentes étapes du processus dialectique ainsi défini suggère également d’autres types de plans que celui sur lequel l’accent est mis ici. Des plans alternatifs peuvent notamment mettre en évidence une partie relative à l’étape de détermination de la valeur de vérité de la thèse considérée, ou bien à la thèse duale de cette dernière.

[21] De manière alternative, on pourrait également considérer la variation suivante:

 

  1. D’un point de vue analytique

1.1 Du point de vue de A0

1.1.1 Eloge de A+

1.1.2 Blâme de A

1.2 Du point de vue de Ā0

1.2.1 Eloge de Ā+

1.2.2 Blâme de Ā

  1. D’un point de vue synthétique: la complémentarité entre A+et Ā+et entre A et Ā

[22] Une variation de ce type de plan consiste bien sûr à assimiler la partie 3 à la conclusion.

[23] Pour ce dernier type de thèse dont la structure est z+(A+) Ù z), on pourra également recourir à un autre type de plan qui met davantage l’accent sur la thèse duale z++) Ù z(A). Un tel type de plan se révèle proche du plan dialectique classique et accorde une place importante à la thèse duale de la thèse étudiée, à savoir z+(éclectisme+) Ù z(cloisonnement). Un tel type de plan présente alors la structure suivante:

  1.  Thèse

1.1 Les avantages de l’expertise+

1.2 Les dangers de la superficialité

  1. Thèse duale

2.1 La nécessité de l’éclectisme+

2.2 Le risque du cloisonnement

  1. La nécessaire synthèse entreéclectisme+et expertise+, et superficialité et cloisonnement
Ce contenu a été publié dans Étude de concepts, avec comme mot(s)-clé(s) , , , , . Vous pouvez le mettre en favoris avec ce permalien.