Une troisième voie pour l’argument de l’Apocalypse

Une troisième voie pour l‘argument de l’Apocalypse

Paul Franceschi

Université de Corse

à paraître dans le Journal of Philosophical Research

Dans ce qui suit, je m’attacherai à présenter une solution au problème posé par l‘argument de l’Apocalypse (DA, dans ce qui suit). La solution ainsi décrite constitue une troisième voie, par rapport à d’une part, l’approche qui est celle des promoteurs de DA (Leslie 1993, 1996) et d’autre part, la solution préconisée par ses détracteurs (Eckhardt 1993, 1997 ; Sowers 2002).1

1. L’argument de l’Apocalypse et le modèle de Carter-Leslie

Pour les besoins de la présente discussion, il convient tout d’abord de présenter brièvement DA. Cet argument peut être décrit comme un raisonnement qui conduit à un décalage bayesien, à partir d’une analogie entre ce qui a été dénommé l’expérience des deux urnes (two-urn case2) et la situation humaine correspondante.

Considérons tout d’abord, l’expérience des deux urnes (adapté de Bostrom 1997) :

L’expérience des deux urnes Une urne3 opaque se trouve devant vous. Vous savez qu’elle contient soit 10, soit 1000 boules numérotées. Une pièce équilibrée a en effet été lancée au temps T0 et si la pièce est tombée sur pile, alors 10 boules ont été placées dans l’urne ; en revanche, si la pièce est tombée sur face, ce sont 1000 boules qui ont été placées dans l’urne. Les boules sont numérotées 1, 2, 3, …. Vous formulez alors les hypothèses Hpeu (l’urne ne contient que 10 boules) et Hbeaucoup (l’urne contient 1000 boules) avec les probabilités initiales P(Hpeu) = P(Hbeaucoup) = 1/2.

Informé de tout ce qui précède, vous tirez au temps T1 une boule au hasard dans l’urne. Vous obtenez ainsi la boule n° 5. Vous vous attachez à estimer le nombre de boules qui étaient contenues en T0 dans l’urne. Vous concluez alors à un décalage bayesien vers le haut en faveur de l’hypothèse Hpeu.

L’expérience des deux urnes constitue une application non controversée du théorème de Bayes. Elle est basée sur les deux hypothèses concurrentes suivantes :

(H1peu)

l’urne contient 10 boules

(H2beaucoup)

l’urne contient 1000 boules

et les probabilités initiales correspondantes : P(H1) = P(H2) = 1/2. En prenant en compte le fait que E dénote l’élément matériel avéré selon lequel la boule tirée au hasard porte le numéro 5 et que P(E|H1) = 1/10 et P(E|H2) = 1/1000, un décalage bayesien vers le haut s’ensuit, par application directe du théorème de Bayes. Par conséquent, les probabilités a posteriori sont telles que P'(H1) = 0.99 et P'(H2) = 0.01.

Considérons, en second lieu, la situation humaine correspondant à DA. En s’intéressant au nombre total d’humains que comptera finalement l’espèce humaine, on considère les deux hypothèses concurrentes suivantes :

(H3peu)

le nombre total des humains ayant jamais existé s’élèvera à 1011 (Apocalypse proche)

(H4beaucoup)

le nombre total des humains ayant jamais existé s’élèvera à 1014 (Apocalypse lointaine)

Il apparaît maintenant que chaque humain possède son propre rang de naissance, et que le votre, par exemple, est environ 60×109. Supposons également, par souci de simplicité, que les probabilités a priori soient telles que P(H3) = P(H4) = 1/2. Maintenant, selon Carter et Leslie, la situation humaine correspondant à DA est analogue au modèle des deux urnes.4 Si l’on dénote par E le fait que notre rang de naissance est 60×109, une application du théorème de Bayes, en prenant en compte le fait que P(E|H3) = 1/1011 et que P(E|H4) = 1/1014, conduit à un important décalage bayesien en faveur de l’hypothèse d’une Apocalypse prochaine, soit P'(H3) = 0.999. L’importance du décalage bayesien qui résulte de ce raisonnement, associé à une situation très inquiétante quant au devenir de l’humanité, à partir de la seule prise en compte de notre rang de naissance, apparaît contraire à l’intuition. En soi, ceci constitue un problème, qui nécessite qu’on s’attache à lui trouver une solution.

Dans un tel contexte, il apparaît qu’une solution à DA se doit de présenter les caractéristiques suivantes. En premier lieu, elle doit indiquer dans quelle mesure la situation humaine correspondant à DA est analogue au modèle des deux urnes ou éventuellement, à un modèle alternatif, dont les caractéristiques sont à préciser. En second lieu, une telle solution à DA doit indiquer dans quelle mesure le ou les modèles en analogie avec la situation humaine correspondant à DA se trouvent associés à une situation effrayante pour l’avenir de l’humanité.

Dans ce qui suit, je m’attacherai à présenter une solution pour DA. Afin d’élaborer cette dernière, il sera nécessaire tout d’abord de construire l’espace des solutions de DA. Une telle construction constitue une tâche non triviale, car elle nécessite la prise en considération non seulement de plusieurs objections qui ont été soulevées contre DA, mais aussi du problème de la classe de référence. Au sein de cet espace des solutions, les solutions préconisées par les défenseurs ainsi que par les détracteurs de DA, prennent naturellement place. Je montrerai finalement qu’au sein de l’espace des solutions ainsi constitué, il y a place pour une troisième voie, qui constitue une solution par essence différente de celle offerte par les défenseurs et les détracteurs de DA.

2. Échec d’un modèle alternatif fondé sur l’objection incrémentale d’Eckhardt et al.

DA est basé sur la mise en correspondance d’un modèle probabiliste – le modèle des deux urnes – avec la situation humaine correspondant à DA. Afin de construire l’espace des solutions pour DA, il convient de s’attacher à définir les modèles qui constituent des alternatives au modèle des deux urnes, et qui peuvent également être mis en correspondance avec la situation humaine correspondant à DA. Plusieurs modèles alternatifs ont notamment été décrits par les opposants à DA. Cependant, pour des raisons qui deviendront claires un peu plus loin, tous ces modèles ne peuvent être retenus valablement en tant que modèle alternatif au modèle des deux urnes, et prendre ainsi place au sein de l’espace des solutions pour DA. Il convient ainsi de distinguer parmi ces modèles proposés par les détracteurs de DA, ceux qui ne constituent pas d’authentiques modèles alternatifs, et ceux qui peuvent légitimement être intégrés au sein de l’espace des solutions de DA.

Un certain nombre d’objections à DA ont tout d’abord été formulées par William Eckhardt (1993, 1997). Pour les besoins de la présente discussion, il convient de distinguer deux objections, parmi celles qui ont été soulevées par Eckhardt, et que j’appellerai respectivement : l’objection incrémentale et l’objection diachronique. À chacune de ces deux objections est associé une expérience qui se propose de constituer un modèle alternatif au modèle des deux urnes.

Commençons tout d’abord par l’objection incrémentale, mentionnée dans Eckhardt (1993, 1997) et le modèle alternatif qui lui est associé. Récemment, George Sowers (2002) et Elliott Sober (2003) s’en sont fait l’écho. Selon cette objection, l’analogie avec l’urne qui se trouve à l’origine de DA, est mal fondée. En effet, dans l‘expérience des deux urnes, le numéro de la boule est choisi au hasard. En revanche, soulignent ces auteurs, dans le cas de la situation humaine correspondant à DA, notre rang de naissance n’est pas choisi au hasard, mais se trouve en fait indexé sur la position temporelle correspondante. Par conséquent, souligne Eckhardt, l’analogie dans le modèle des deux urnes n’est pas fondée et l’ensemble du raisonnement s’en trouve invalidé. Sober (2003) développe une argumentation similaire,5 en soulignant qu’aucun mécanisme ayant pour objet d’assigner de manière aléatoire une position temporelle aux êtres humains, ne peut être mis en évidence. Enfin, une telle objection a récemment été ravivée par Sowers. Ce dernier a mis l’accent sur le fait que le rang de naissance de chaque humain n’est pas aléatoire, car il se trouve indexé sur la position temporelle correspondante.

Selon le point de vue développé par Eckhardt et al., la situation humaine correspondant à DA n’est pas analogue à l’expérience des deux urnes, mais plutôt à un modèle alternatif, qui peut être appelé le distributeur d’objets consécutifs (consecutive token dispenser). Le distributeur d’objets consécutifs est un dispositif, décrit à l’origine par Eckhardt,6 qui éjecte à intervalles réguliers des boules numérotées consécutivement : “(…) suppose on each trial the consecutive token dispenser expels either 50 (early doom) or 100 (late doom) consecutively numbered tokens at the rate of one per minute”. Un dispositif similaire – appelons-le le distributeur de boules numérotées – est également mentionné par Sowers, où les boules sont éjectées de l’urne et numérotées selon l’ordre de leur éjection, à l’intervalle régulier d’une par minute :7

There are two urns populated with balls as before, but now the balls are not numbered. Suppose you obtain your sample with the following procedure. You are equipped with a stopwatch and a marker. You first choose one of the urns as your subject. It doesn’t matter which urn is chosen. You start the stopwatch. Each minute you reach into the urn and withdraw a ball. The first ball withdrawn you mark with the number one and set aside. The second ball you mark with the number two. In general, the nth ball withdrawn you mark with the number n. After an arbitrary amount of time has elapsed, you stop the watch and the experiment. In parallel with the original scenario, suppose the last ball withdrawn is marked with a seven. Will there be a probability shift? An examination of the relative likelihoods reveals no.

Ainsi, en vertu du point de vue défendu par Eckhardt et al., la situation humaine correspondant à DA n’est pas en analogie avec l’expérience des deux urnes, mais bien avec le distributeur de boules numérotées. Et ce dernier modèle conduit à laisser inchangées les probabilités initiales.

L’objection incrémentale d’Eckhardt et al. se trouve basée sur une disanalogie. En effet, la situation humaine correspondant à DA présente une nature temporelle, car les rangs de naissance sont successivement attribués aux humains en fonction de la position temporelle correspondant à leur apparition sur Terre. Ainsi, la situation correspondante prend place, par exemple, de T1 à Tn, où 1 et n sont respectivement les rang de naissance du premier et du dernier humain. En revanche, l’expérience des deux urnes se révèle atemporelle, car au moment où la boule est tirée au hasard, toutes les boules sont déjà présentes dans l’urne. L’expérience des deux urnes prend ainsi place à un moment donné T0. Il apparaît ainsi que l’expérience des deux urnes consiste en un modèle atemporel, alors que la situation correspondant à DA correspond à un modèle temporel. Et ceci interdit, soulignent Eckhardt et al., de considérer la situation correspondant à DA et l’expérience des deux urnes comme isomorphes.8

À ce stade, il s’avère que la disanalogie atemporelle-temporelle constitue bien une réalité et qu’elle ne peut être niée. Toutefois, ceci ne constitue pas un obstacle insurmontable pour DA. On le verra en effet, il est possible de mettre en analogie la situation humaine correspondant à DA, avec une variation temporelle du modèle des deux urnes. Il suffit pour cela de considérer l’expérience suivante, que l’on peut dénommer l’expérience des deux urnes incrémentale (formellement, l’expérience des deux urnes++) :

L’expérience des deux urnes++ Une urne opaque se trouve devant vous. Vous savez qu’elle contient soit 10, soit 1000 boules numérotées. Une pièce équilibrée a en effet été lancée au temps T0 et si la pièce est tombée sur pile, alors l’urne ne contient que 10 boules ; en revanche, si la pièce est tombée sur face, l’urne contient ces mêmes 10 boules plus 990 boules supplémentaires, soient 1000 boules au total. Les boules sont numérotées 1, 2, 3, …. Vous formulez alors les hypothèses Hpeu (l’urne ne contient que 10 boules) et Hbeaucoup (l’urne contient 1000 boules) avec les probabilités initiales P(Hpeu) = P(Hbeaucoup) = 1/2. Au temps T1, un dispositif tirera dans l’urne une boule au hasard, puis expulsera à chaque seconde une boule numérotée dans l’ordre croissant, de la boule n° 1 jusqu’au numéro de la boule tirée au hasard. À ce moment précis, le dispositif s’arrêtera.

Vous êtes informé de tout ce qui précède, et le dispositif expulse alors la boule n° 1 en T1, la boule n° 2 en T2, la boule n° 3 en T3, la boule n° 4 en T4, puis la boule n° 5 en T5. Le dispositif s’arrête alors. Vous vous attachez à estimer le nombre de boules qui étaient contenues en T0 dans l’urne. Vous concluez alors à un décalage bayesien vers le haut en faveur de l’hypothèse Hpeu.

On le voit, une telle variation constitue une adaptation simple du modèle des deux urnes original, avec l’ajout d’un mécanisme incrémental pour l’expulsion des boules. La nouveauté avec cette variation9 réside dans le fait que l’expérience présente maintenant un aspect temporel, puisque la sélection aléatoire est effectuée en T1 et que la boule tirée au hasard est finalement éjectée, par exemple, en T5.

À ce stade, il convient également d’analyser les conséquences de l’expérience des deux urnes++ sur l’analyse développée par Eckhardt et al. En effet, dans l’expérience des deux urnes++, le numéro de chacune des boules éjectées du dispositif est indexé sur le rang de leur expulsion. Par exemple, je tire la boule n°60000000000. Mais je sais également que la boule précédente était la boule n°59999999999 et que l’avant-dernière boule était la boule n°59999999998, etc. Cependant, cela ne m’empêche pas de raisonner de la même manière que dans l’expérience des deux urnes originale et de conclure à un décalage bayesien en faveur de l’hypothèse Hpeu. Dans ce contexte, l’expérience des deux urnes++ conduit à la conséquence suivante : le fait d’être indexé par rapport au temps n’implique pas que le numéro de la boule ne soit pas choisi de manière aléatoire. Ceci peut maintenant être confronté avec la thèse principale de l’objection incrémentale développée par Eckhardt et al., selon laquelle le rang de naissance de chaque humain n’est pas choisi de manière aléatoire, mais se révèle indexé sur la position temporelle correspondante. Sowers en particulier considère que la cause de DA réside dans le fait que le numéro correspondant au rang de naissance se trouve indexé par rapport au temps.10 Mais ce que l’expérience des deux urnes++ et l’analogie correspondante démontrent, c’est que notre rang de naissance peut être indexé par rapport au temps et se trouver néanmoins déterminé de manière aléatoire dans le contexte qui est celui de DA. Pour cette raison, le modèle du distributeur de boules numérotées proposé par Eckhardt et Sowers ne peut pas être pris en considération en tant que modèle alternatif au modèle des deux urnes, au sein de l’espace des solutions de DA.

3. Succès d’un modèle alternatif fondé sur l’objection diachronique de William Eckhardt

William Eckhardt (1993, 1997) expose également une autre objection à DA, que nous appellerons, pour les besoins de la présente discussion, l’objection diachronique. Cette dernière objection, on le verra, est basée sur un modèle alternatif à l’expérience des deux urnes, qui est différent de celui qui correspond à l’objection incrémentale. Eckhardt (1997, p. 256) souligne ainsi le fait qu’il est impossible d’effectuer une sélection aléatoire, dès lorsqu’il existe de nombreux individus qui ne sont pas encore nés au sein de la classe de référence correspondante : “How is it possible in the selection of a random rank to give the appropriate weight to unborn members of the population?”.

Cette seconde objection est potentiellement plus forte que l’objection incrémentale. Afin d’en évaluer la portée précise, il convient maintenant de la traduire en termes de modèle. Il apparaît que le modèle associé à l’objection diachronique d’Eckhardt peut être construit, à partir de la structure du modèle des urnes. La version correspondante, qui peut être dénommée l’expérience des deux urnes diachronique, est la suivante :

L’expérience des deux urnes diachronique Une urne opaque se trouve devant vous. Vous savez qu’elle contient soit 10, soit 1000 boules numérotées. Une pièce équilibrée a en effet été lancée au temps T0. Si la pièce est tombée sur pile, 10 boules ont alors été placées dans l’urne ; en revanche, si la pièce est tombée sur face, 10 boules ont également été placées dans l’urne au temps T0, mais 990 boules supplémentaires seront ensuite ajoutées dans l’urne au temps T2, portant ainsi le nombre total de boules finalement contenues dans l’urne à 1000. Les boules sont numérotées 1, 2, 3, …. Vous formulez alors les hypothèses Hpeu (l’urne ne contient finalement que 10 boules) et Hbeaucoup (l’urne contient finalement 1000 boules) avec les probabilités initiales P(Hpeu) = P(Hbeaucoup) = 1/2.

Informé de tout ce qui précède, vous tirez au temps T1 une boule au hasard dans l’urne. Vous obtenez ainsi la boule n° 5. Vous vous attachez à estimer le nombre de boules qui seront finalement contenues dans l’urne en T2. Vous concluez alors que les probabilités initiales demeurent inchangées.

À ce stade, il apparaît que le protocole qui vient d’être décrit rend justice à l’idée forte d’Eckhardt selon laquelle il est impossible d’effectuer une sélection aléatoire lorsqu’il existe de nombreux membres au sein de la classe de référence qui ne sont pas encore nés. Dans le modèle des deux urnes diachronique, les 990 boules qui sont éventuellement (si la pièce tombe sur face) ajoutées en T2 représentent en effet ces membres non encore nés. Dans une telle situation, il serait tout à fait erroné de conclure à un décalage bayesien en faveur de l’hypothèse Hpeu. En revanche, ce que l’on peut inférer de manière rationnelle dans un tel cas, c’est que les probabilités initiales demeurent inchangées.

On peut constater en outre que la structure du protocole de l’expérience des deux urnes diachronique se révèle tout à fait similaire à celui de l’expérience des deux urnes originale (que nous appellerons désormais l’expérience des deux urnes synchronique). Ceci permet désormais d’effectuer aisément des comparaisons. On constate ainsi que si la pièce tombe sur pile : la situation est identique dans les deux expériences, synchronique et diachronique. En revanche, la situation est différente si la pièce tombe sur face : dans le modèle des deux urnes synchronique, les 990 boules supplémentaires sont déjà présentes dans l’urne en T0 ; à l’inverse, dans le modèle des deux urnes diachronique, les 990 boules supplémentaires sont ajoutées dans l’urne ultérieurement, c’est-à-dire en T2. On le voit ainsi, le modèle des deux urnes diachronique fondé sur l’objection diachronique d’Eckhardt mérite tout à fait de prendre sa place au sein de l’espace des solutions de DA.

4. Construction de l’espace des solutions préliminaire

Compte tenu de ce qui précède, nous sommes maintenant en position d’apprécier à quel point l’analogie qui sous-tend DA se révèle adéquate. Il apparaît en effet que deux modèles alternatifs pour modéliser l’analogie avec la situation humaine correspondant à DA se trouvent en concurrence : d’une part le modèle des deux urnes synchronique préconisé par les promoteurs de DA et d’autre part, le modèle des deux urnes diachronique, fondé sur l’objection diachronique d’Eckhardt. Il s’avère que ces deux modèles présentent une structure commune, ce qui permet ainsi d’effectuer des comparaisons11.

À ce stade, la question qui se pose est la suivante : la situation humaine correspondant à DA est-elle en analogie avec (a) le modèle des deux urnes synchronique, ou bien à (b) le modèle des deux urnes diachronique ? Afin d’y répondre, la question suivante s’ensuit : existe-t-il un critère objectif qui permette de choisir, de manière préférentielle, entre les deux modèles concurrents ? Il apparaît que non. En effet, ni Leslie ni Eckhardt ne présentent une motivation objective qui permette de justifier le choix du modèle qu’ils préconisent, et d’écarter le modèle alternatif. Leslie tout d’abord, défend l’analogie de la situation humaine correspondant à DA avec l’expérience de la loterie (ici, l’expérience des deux urnes synchronique). Mais parallèlement, Leslie reconnaît que DA est considérablement affaibli si notre univers est d’une nature indéterministe, c’est-à-dire si le nombre total d’humains qui existeront n’est pas encore fixé.12 Or il s’avère qu’une telle situation indéterministe correspond tout à fait au modèle des deux urnes diachronique. Car le protocole de cette expérience prend en compte le fait que le nombre total de boules qui seront finalement contenues dans l’urne, n’est pas connu au moment où le tirage aléatoire est effectué. On le voit finalement, Leslie accepte libéralement que l’analogie avec le modèle des deux urnes synchronique puisse ne pas prévaloir dans certaines circonstances indéterministes, où comme on l’a vu, ce serait alors le modèle des deux urnes diachronique qui s’appliquerait.

Parallèlement, une faiblesse dans le point de vue défendu par Eckhardt réside dans le fait qu’il rejette l’analogie avec l’expérience de la loterie (ici, l’expérience des deux urnes synchronique) dans tous les cas. Mais comment peut-on avoir la certitude qu’une analogie avec le modèle des deux urnes synchronique ne prévaut pas, au moins pour une situation particulière donnée ? Il apparaît ici que les éléments probants qui permettent d’écarter une telle hypothèse avec une certitude absolue, font défaut.

Résumons maintenant. Au sein de l’espace des solutions pour DA qui résulte de ce qui précède, il s’ensuit désormais que deux modèles concurrents peuvent convenir également pour modéliser la situation humaine correspondant à DA : le modèle des deux urnes synchronique de Leslie ou le modèle des deux urnes diachronique d’Eckhardt. À ce stade toutefois, il apparaît qu’aucun critère objectif ne permet à ce stade d’accorder la préférence à l’un ou l’autre de ces deux modèles. Dans ces circonstances, en l’absence d’éléments objectifs permettant d’effectuer un choix entre les deux modèles concurrents, nous sommes conduits à appliquer un principe d’indifférence, qui conduit à retenir les deux modèles comme globalement équiprobables. Nous attribuons ainsi (Figure 1), en vertu d’un principe d’indifférence, une probabilité P de 1/2 à l’analogie avec le modèle des deux urnes synchronique (associé à un scénario terrifiant), et une probabilité identique de 1/2 à l’analogie avec le modèle des deux urnes diachronique (associé à un scénario rassurant).

 

Cas

Modèle

T0

T2

P

Nature du scénario

1

modèle des deux urnes synchronique

1/2

terrifiant

2

modèle des deux urnes diachronique

1/2

rassurant

 

Figure 1.

Une telle approche revêt toutefois un caractère préliminaire, car afin d’attribuer une probabilité précise à chacune des situations inhérentes à DA, il est nécessaire de prendre en considération l’ensemble des éléments qui sous-tendent DA. Or il apparaît qu’un élément essentiel de DA n’a pas encore été pris en compte. Il s’agit du délicat problème de la classe de référence.

5. Le problème de la classe de référence

Commençons tout d’abord par rappeler le problème de la classe de référence (reference class problem).13 Sommairement, il s’agit du problème de la définition correcte des “humains”. De manière plus précise, le problème peut être ainsi énoncé : comment la classe de référence peut-elle être objectivement définie dans le contexte de DA ? Car une définition plus ou moins extensive ou restrictive de la classe de référence peut être utilisée. Une classe de référence définie de manière extensive inclurait par exemple des variétés quelque peu exotiques correspondant à des évolutions futures de notre humanité, possédant par exemple un quotient intellectuel moyen égal à 200, un double cerveau ou bien des capacités pour la causalité rétrograde. À l’inverse, une classe de référence définie de manière restrictive n’inclurait que les humains dont les caractéristiques sont très exactement celles de – par exemple – notre sous-espèce homo sapiens sapiens. Une telle définition exclurait ainsi l’espèce éteinte homo sapiens neandertalensis, de même qu’une éventuelle future sous-espèce telle qu’homo sapiens supersapiens. Pour mettre cela en adéquation avec notre actuelle taxonomie, la classe de référence peut être définie à différents niveaux qui correspondent respectivement au super-genre superhomo, au genre homo, à l’espèce homo sapiens, à la sous-espèce homo sapiens sapiens, etc. À ce stade, il apparaît qu’un critère objectif permettant de choisir le niveau correspondant d’une manière qui ne soit pas arbitraire, fait défaut.

La solution proposée par Leslie’s au problème de la classe de référence, exposée dans la réponse faite à Eckhardt (1993) et dans The End of the World (1996), est la suivante : on peut choisir la classe de référence plus ou moins comme on le souhaite, c’est-à-dire à n’importe quel niveau d’extension ou de restriction. Une fois ce choix effectué, il suffit d’ajuster en conséquence les probabilités initiales, et DA fonctionne à nouveau. La seule réserve énoncée par Leslie est que la classe de référence ne doit pas être choisie à un niveau extrême d’extension ou de restriction.14 Pour Leslie, le fait que chaque humain puisse appartenir à différentes classes, selon qu’elles sont définies de manière restrictive ou extensive, ne constitue pas un problème, puisque l’argument fonctionne pour chacune de ces classes. Dans ce cas, indique Leslie, un décalage bayesien s’ensuit quelque soit la classe de référence, choisie à un niveau raisonnable d’extension ou de restriction. Et Leslie illustre ce point de vue par une analogie avec une urne multicolore, à la différence de l’urne unicolore de l’expérience des deux urnes originale. Il considère ainsi une urne qui contient des boules de différentes couleurs, par exemple rouges et vertes. Une boule rouge est tirée au hasard dans l’urne. D’un point de vue restrictif, la boule constitue une boule rouge et il n’y a alors pas de différence avec le modèle des deux urnes. Mais d’un point de vue plus extensif, la boule constitue aussi une boule rouge ou verte.15 Selon Leslie, bien que les probabilités initiales soient différentes dans chaque cas, un décalage bayesien s’ensuit dans les deux cas.16 On le voit, le modèle des deux urnes synchronique peut aisément être adapté pour restituer l’essence du modèle multicolore de Leslie. Il suffit en effet de remplacer les boules rouges de l’expérience des deux urnes synchronique originale, par des boules rouges ou vertes. Le modèle bicolore qui en résulte est alors en tous points identique à l’expérience des deux urnes synchronique originale, et conduit à un décalage bayesien de même nature.

À ce stade, afin d’intégrer adéquatement le problème de la classe de référence au sein de l’espace des solutions pour DA, il reste encore à traduire le modèle des deux urnes diachronique en une version bicolore.

5.1 Le modèle des deux urnes diachronique bicolore

Dans l’expérience unicolore originale qui correspond au modèle des deux urnes diachronique, la classe de référence est celle des boules rouges. Il apparaît ici que l’on peut construire une variation bicolore, adaptée au traitement du problème de la classe de référence, où la classe pertinente est celle des boules rouges ou vertes. La variation bicolore correspondante est alors en tous points identique à l’expérience des deux urnes diachronique originale, à la seule différence que les 10 premières boules (1 à 10) sont rouges et que les 990 autres boules (11 à 1000) sont vertes. La variation correspondante est ainsi la suivante :

L’expérience des deux urnes diachronique bicolore Une urne opaque se trouve devant vous. Vous savez qu’elle contient soit 10, soit 1000 boules numérotées (consistant en 10 boules rouges et 990 boules vertes). Les boules rouges sont numérotées 1, 2, …, 9, 10 et les boules vertes 11, 12, .., 999, 1000. Une pièce équilibrée a en effet été lancée au temps T0. Si la pièce est tombée sur pile, 10 boules ont alors été placées dans l’urne ; en revanche, si la pièce est tombée sur face, 10 boules rouges ont également placées dans l’urne au temps T0, mais 990 boules vertes supplémentaires seront ensuite ajoutées dans l’urne au temps T2, portant ainsi le nombre total de boules contenues dans l’urne à 1000. Vous formulez alors les hypothèses Hpeu (l’urne ne contient finalement que 10 boules rouges ou vertes) et Hbeaucoup (l’urne contient finalement 1000 boules rouges ou vertes) avec les probabilités initiales P(Hpeu) = P(Hbeaucoup) = 1/2.

Informé de tout ce qui précède, vous tirez au temps T1 une boule au hasard dans l’urne. Vous obtenez ainsi la boule rouge n° 5. Vous vous attachez à estimer le nombre de boules rouges ou vertes qui seront finalement contenues dans l’urne en T2. Vous concluez alors que les probabilités initiales demeurent inchangées.

On le voit, la structure de cette variation bicolore est en tous points analogue à celle de la version unicolore de l’expérience des deux urnes diachronique. On considère en effet ici la classe des boules rouges ou vertes, en lieu et place de la classe des boules rouges originale. Et dans ce type de situation, il est rationnel de conclure de la même manière que dans la version unicolore originale de l’expérience des deux urnes diachronique que les probabilités initiales demeurent inchangées.

5.2 Non-exclusivité du modèle synchronique unicolore et du modèle diachronique bicolore

À l’aide des outils permettant d’appréhender le problème de la classe de référence, nous sommes désormais en mesure d’achever la construction de l’espace des solutions pour DA, en intégrant les éléments qui viennent d’être décrits. De manière préliminaire, nous avons attribué une probabilité de 1/2 à chacun des modèles des deux urnes unicolores – synchronique et diachronique – en leur associant respectivement un scénario terrifiant et rassurant. Qu’en est-il désormais, compte tenu de la présence de modèles bicolores, permettant désormais d’appréhender le problème lié à la classe de référence ?

Avant d’évaluer l’impact du modèle bicolore sur l’espace des solutions de DA, il convient tout d’abord de définir comment s’effectue la mise en correspondance des modèles bicolores avec notre situation humaine actuelle. Pour cela, il suffit d’assimiler la classe des boules rouges à notre sous-espèce actuelle homo sapiens sapiens et la classe des boules rouges ou vertes à notre actuelle espèce homo sapiens. De même, on assimilera la classe des boules vertes à la sous-espèce homo sapiens supersapiens, une sous-espèce plus avancée que la notre, qui correspond à une évolution d’homo sapiens sapiens. Une situation de ce type se révèle très courante dans le processus évolutionnel qui régit les espèces. Compte tenu de ces éléments, nous sommes désormais en mesure d’établir la mise en relation des modèles probabilistes avec notre situation actuelle.

À ce stade, il convient de noter une importante propriété du modèle diachronique bicolore. En effet, il s’avère que ce dernier modèle est susceptible de se combiner avec un modèle des deux urnes synchronique unicolore. Supposons en effet qu’un modèle des deux urnes synchronique unicolore prévale : 10 boules ou 1000 boules rouges sont placées dans l’urne en T0. Mais cela n’exclut pas que des boules vertes soient également ajoutées dans l’urne en T2. Il apparaît ainsi que le modèle synchronique unicolore et le modèle diachronique bicolore ne sont pas exclusifs l’un de l’autre. Car dans une telle situation, un modèle des deux urnes synchronique unicolore prévaut pour la classe restreinte des boules rouges, tandis qu’un modèle diachronique bicolore s’applique à la classe étendue des boules rouges ou vertes. À ce stade, il apparaît que nous nous trouvons sur une troisième voie, d’essence pluraliste. Car le fait de mettre en correspondance la situation humaine correspondant à DA avec le modèle synchronique ou bien (de manière exclusive) le modèle diachronique, constituent bien des attitudes monistes. À l’inverse, le fait de reconnaître le rôle conjoint joué par chacun des modèles synchronique et diachronique, constitue l’expression d’un point de vue pluraliste. Dans ces circonstances, il s’avère nécessaire d’analyser l’impact sur l’espace des solutions de DA de la propriété de non-exclusivité qui vient d’être soulignée.

Compte tenu de ce qui précède, il apparaît que quatre types de situations doivent désormais être distingués, au sein de l’espace des solutions de DA. En effet, chacun des deux modèles unicolores initiaux – synchronique et diachronique – peut être associé à un modèle des deux urnes diachronique bicolore. Commençons ainsi par le cas (1) où le modèle synchronique unicolore s’applique. Dans ce cas, on est amené à distinguer deux types de situations : soit (1a) rien ne se passe en T2 et aucune boule verte n’est ajoutée dans l’urne en T2 ; soit (1b) 990 boules vertes sont ajoutées dans l’urne en T2. Dans le premier cas (1a) où aucune boule verte n’est ajoutée dans l’urne en T2, on a bien une disparition rapide de la classe des boules rouges. De même, on a une disparition corrélative de la classe des boules rouges ou vertes, puisqu’elle s’identifie ici avec la classe des boules rouges. Dans un tel cas, l’extinction rapide d’homo sapiens sapiens (les boules rouges) n’est pas suivie par l’apparition d’homo sapiens supersapiens (les boules vertes). Dans un tel cas, on observe l’extinction rapide de la sous-espèce homo sapiens sapiens et l’extinction corrélative de l’espèce homo sapiens (les boules rouges ou vertes). Un tel scénario, on doit le reconnaître, correspond à une forme d’Apocalypse qui présente un caractère tout à fait effrayant.

Considérons maintenant le second cas (1b) où nous sommes toujours en présence d’un modèle synchronique unicolore, mais où cette fois, des boules vertes sont également ajoutées dans l’urne en T2. Dans ce cas, 990 boules vertes s’ajoutent en T2 aux boules rouges initialement placées dans l’urne en T0. On a alors une disparition rapide de la classe des boules rouges, mais qui s’accompagne de la survivance de la classe des boules rouges ou vertes, compte tenu de la présence des boules vertes en T2. Dans ce cas (1b), on constate qu’un modèle synchronique unicolore se trouve combiné avec un modèle diachronique bicolore. Les deux modèles se révèlent ainsi compatibles, et non-exclusifs l’un de l’autre. Si l’on traduit cela en termes de troisième voie, on constate, en conformité avec l’essence pluraliste de cette dernière, que le modèle synchronique unicolore s’applique à la classe, restrictivement définie, des boules rouges, alors qu’un modèle diachronique bicolore s’applique également à la classe, définie de manière extensive, des boules rouges ou vertes. Dans ce cas (1b), l’extinction rapide d’homo sapiens sapiens (les boules rouges) est suivie par l’apparition de la sous-espèce humaine plus évoluée homo sapiens supersapiens (les boules vertes). Dans une telle situation, la classe restreinte homo sapiens sapiens se trouve éteinte, alors que la classe plus étendue homo sapiens (les boules rouges ou vertes) survit. Alors que le modèle synchronique unicolore s’applique à la classe restreinte homo sapiens sapiens, le modèle diachronique bicolore prévaut pour la classe plus étendue homo sapiens. Mais une telle caractéristique ambivalente a pour effet de priver l’argument original de la terreur qui est initialement associée avec le modèle synchronique unicolore. Et finalement, cela a pour effet de rendre DA inoffensif, en le privant de sa terreur originelle. En même temps, ceci laisse le champ à l’argument pour s’appliquer à une classe de référence donnée, mais sans ses conséquences effrayantes et contraires à l’intuition.

Dans le cas (1) on le voit, le traitement correspondant du problème de la classe de référence se révèle différent de celui préconisé par Leslie. Car Leslie considère que le modèle synchronique s’applique quelle que soit la classe de référence choisie. Mais la présente analyse conduit à un traitement différencié du problème de la classe de référence. Dans le cas (1a), le modèle synchronique prévaut et un décalage bayesien s’applique, de même que dans le traitement de Leslie, à la fois à la classe des boules rouges et à celle des boules rouges ou vertes. En revanche, dans le cas (1b), la situation est différente. Car si un modèle synchronique unicolore s’applique bien à la classe de référence restreinte des boules rouges et conduit à un décalage bayesien, il apparaît qu’un modèle diachronique bicolore s’applique alors à la classe de référence étendue des boules rouges ou vertes, qui conduit à laisser les probabilités initiales inchangées. Dans ce cas (1b), on le voit, la troisième voie conduit à un traitement pluraliste du problème de la classe de référence.

Envisageons maintenant la seconde hypothèse (2) où c’est le modèle diachronique unicolore qui prévaut. Dans ce cas, 10 boules rouges sont placées dans l’urne en T0, puis 990 autres boules rouges sont ajoutées dans l’urne en T2. De même que précédemment, on est conduit à distinguer deux hypothèses. Soit (2a) aucune boule verte n’est ajoutée dans l’urne en T2 ; soit (2b) 990 boules vertes sont également ajoutées à l’urne en T2. Dans le premier cas (2a), le modèle diachronique unicolore s’applique. Dans une telle situation (2a), aucune apparition d’une sous-espèce humaine plus évoluée telle qu’homo sapiens supersapiens ne se produit. Mais le scénario correspondant à un tel cas se révèle également tout à fait rassurant, puisque notre sous-espèce homo sapiens sapiens survit. Dans le second cas (2b), où 990 boules vertes sont ajoutées dans l’urne en T2, un modèle diachronique bicolore s’ajoute au modèle diachronique unicolore initial. Dans une telle hypothèse (2b), il s’ensuit l’apparition de la sous-espèce plus évoluée homo sapiens supersapiens. Dans ce cas, le scénario correspondant se révèle doublement rassurant, puisqu’il conduit à la fois à la survivance d’homo sapiens sapiens et à celle d’homo sapiens supersapiens. On le voit, dans le cas (2), c’est le modèle diachronique qui demeure le modèle fondamental, conduisant à laisser les probabilités initiales inchangées.

À ce stade, nous sommes en mesure d’achever la construction de l’espace des solutions pour DA. En effet, une nouvelle application du principe d’indifférence conduit ici à attribuer une probabilité de 1/4 à chacun des 4 sous-cas : (1a), (1b), (2a), (2b). Ces derniers se trouvent représentés sur la figure ci-dessous :

 

Cas

T0

T2

P

1

1a

1/4

1b

1/4

2

2a

1/4

2b

1/4

 

Figure 2.

Il suffit désormais de déterminer la nature du scénario qui est associé à chacun des quatre sous-cas qui viennent d’être décrits. Ainsi que cela a été discuté plus haut, un scénario inquiétant est associé à l’hypothèse (1a), alors qu’un scénario rassurant est associé aux hypothèses (1b), (2a) et (2b) :

 

Cas

T0

T2

P

Nature du scénario

P

1

1a

1/4

terrifiant

1/4

1b

1/4

rassurant

2

2a

1/4

rassurant

3/4

2b

1/4

rassurant

 

Figure 3.

On le voit finalement, les considérations qui précèdent conduisent à une nouvelle formulation de DA. Car il résulte des développements précédents que la portée initiale de DA doit être réduite, dans deux directions différentes. En premier lieu, il convient de reconnaître que soit le modèle synchronique unicolore, soit le modèle diachronique unicolore s’applique à notre sous-espèce homo sapiens sapiens. Un principe d’indifférence conduit alors à attribuer une probabilité de 1/2 à chacune de ces deux hypothèses. Il en résulte un premier affaiblissement de DA, puisque le décalage bayesien associé à une hypothèse terrifiante ne concerne plus qu’un scénario sur deux. Un deuxième affaiblissement de DA résulte ensuite du traitement pluraliste du problème de la classe de référence. Car dans l’hypothèse où le modèle synchronique unicolore (1) s’applique à notre sous-espèce homo sapiens sapiens, deux situations différentes doivent être distinguées. L’une d’entre elles seulement (1a) conduit à la fois à la disparition d’homo sapiens sapiens et d’homo sapiens et correspond ainsi à une Apocalypse effrayante. En revanche, l’autre situation (1b) conduit à la disparition d’homo sapiens sapiens mais à la survivance de la sous-espèce humaine plus évoluée homo sapiens supersapiens, et constitue alors un scénario tout à fait rassurant. À ce stade, une seconde application du principe d’indifférence entraîne l’attribution d’une probabilité de 1/2 à chacun de ces deux sous-cas (cf. Figure 3). Au total, un scénario effrayant n’est plus associé désormais qu’avec une probabilité de 1/4, alors qu’un scénario rassurant se trouve associé avec une probabilité de 3/4.

On le voit, étant donné ces deux mouvements de recul, il en résulte une nouvelle formulation de DA, qui pourrait se révéler plus consensuelle que dans sa forme originale. En effet, la présente formulation de DA peut maintenant être réconciliée avec nos intuitions pré-théoriques. Car le fait de prendre en compte DA donne désormais une probabilité de 3/4 pour l’ensemble des scénarios rassurants et une probabilité qui n’est plus que de 1/4 pour un scénario associé à une Apocalypse effrayante. Bien sûr, nous n’avons pas fait complètement disparaître le risque d’une Apocalypse effrayante. Et nous devons, à ce stade, accepter un certain risque, dont la portée se révèle toutefois limitée. Mais surtout, il n’est plus nécessaire désormais de renoncer à nos intuitions pré-théoriques.

Finalement, ce qui précède met en lumière une facette essentielle de DA. Car dans un sens étroit, il s’agit d’un argument qui concerne le destin de l’humanité. Et dans un sens plus large (celui qui nous a concerné jusqu’ici) il met en avant la difficulté d’appliquer des modèles probabilistes aux situations de la vie courante,17 une difficulté qui est le plus souvent largement sous-estimée. Ceci ouvre la voie à un champ entier qui présente un réel intérêt pratique, consistant en une taxonomie de modèles probabilistes, dont l’importance philosophique serait demeurée cachée, sans la défense forte et courageuse de l’argument de l’Apocalypse effectuée par John Leslie.18


Références

Bostrom, N. (1997) ‘Investigations into the Doomsday argument, pré-publication à http://www.anthropic-principle.com/preprints/inv/investigations.html

Bostrom, N. (2002) Anthropic Bias: Observation Selection Effects in Science and Philosophy, New York: Routledge

Chambers, T. (2001) ‘Do Doomsday’s Proponents Think We Were Born Yesterday?’, Philosophy, 76, 443-50

Delahaye, J-P. (1996) ‘Recherche de modèles pour l’argument de l’apocalypse de Carter-Leslie’, manuscrit

Eckhardt, W. (1993) ‘Probability Theory and the Doomsday Argument’, Mind, 102, 483-88

Eckhardt, W. (1997) ‘A Shooting-Room view of Doomsday’, Journal of Philosophy, 94, 244-259

Franceschi, P. (1998) ‘Une solution pour l’Argument de l’Apocalypse’, Canadian Journal of Philosophy, 28, 227-46

Franceschi, P. (1999) ‘Comment l’urne de Carter et Leslie se déverse dans celle de Hempel’, Canadian Journal of Philosophy, 29, 139-56, traduction anglaise sous le titre ‘The Doomsday Argument and Hempel’s Problem’, http://cogprints.org/2172/

Franceschi, P. (2002) Une application des n-univers à l’Argument de l’Apocalypse et au paradoxe de Goodman, Corté: Université de Corse, dissertation doctorale, http://www.univ-corse.fr/~franceschi/Une%20application%20des%20n-univers.pdf

Hájek, A. (2002) ‘Interpretations of Probability’, The Stanford Encyclopedia of Philosophy, E. N. Zalta (ed.), http://plato.stanford.edu/archives/win2002/entries/probability-interpret

Korb, K. & Oliver, J. (1998) ‘A Refutation of the Doomsday Argument’, Mind, 107, 403-10

Leslie, J. (1993) ‘Doom and Probabilities’, Mind, 102, 489-91

Leslie, J. (1996) The End of the World: the science and ethics of human extinction, London: Routledge

Sober, E. (2003) ‘An Empirical Critique of Two Versions of the Doomsday Argument – Gott’s Line and Leslie’s Wedge’, Synthese, 135-3, 415-30

Sowers, G. F. (2002) ‘The Demise of the Doomsday Argument’, Mind, 111, 37-45

1 La présente analyse de DA constitue le prolongement de Franceschi (2002).

2 Cf. Korb & Oliver (1998).

3 La description originale par Bostrom de l’expérience des deux urnes se réfère à deux urnes distinctes. Dans un souci de simplicité, je me réfère ici, de manière équivalente, à une seule urne (qui contient soit 10, soit 1000 boules).

4 De manière plus précise, Leslie considère une analogie avec l’expérience de la loterie.

5 Cf. (2003, p. 9): “But who or what has the propensity to randomly assign me a temporal location in the duration of the human race? There is no such mechanism”. Mais Sober s’intéresse surtout à fournir des preuves par rapport aux hypothèses utilisées dans la version originale de DA et à élargir le champ de l’argument en déterminant les conditions de son application à des situations concrètes.

6 Cf. (1997, p. 251).

7 Cf. (2002, p. 39).

8 J’emprunte cette terminologie à Chambers (2001).

9 D’autres variations de l’expérience des deux urnes++ peuvent même être envisagées. En particulier, des variations de l’expérience où le processus aléatoire s’opère de manière diachronique et non synchronique (c’est-à-dire au temps T0) peuvent être imaginées.

10 Cf. Sowers (2002, p. 40).

11Les expériences des deux urnes synchronique et diachronique peuvent toutes deux donner lieu à une variation incrémentale. La variation incrémentale de l’expérience des deux urnes (synchronique) a été mentionnée plus haut : il s’agit de l’expérience des deux urnes++. Il est de même possible de construire une variation incrémentale analogue pour l’expérience des deux urnes diachronique, où l’éjection des boules s’effectue à des intervalles temporels réguliers. À ce stade, il apparaît que les deux modèles concurrents peuvent donner lieu à une telle variation incrémentale. Ainsi, le fait de considérer les variations incrémentales des deux modèles concurrents – l’expérience des deux urnes++ synchronique et l’expérience des deux urnes++ diachronique, n’apporte pas ici d’élément nouveau par rapport aux deux expériences originales. De même, on pourrait considérer en effet des variations où le tirage aléatoire s’effectue non pas en T0, mais de manière progressive, ou des variations où une pièce quantique est utilisée, etc. Mais dans tous les cas, de telles variations sont susceptibles d’être adaptées à chacun des deux modèles.

12 Leslie (1993, p. 490) évoque ainsi: “(…) the potentially much stronger objection that the number of names in the doomsday argument’s imaginary urn, the number of all humans who will ever have lived, has not yet been firmly settled because the world is indeterministic”.

13 Le problème de la classe de référence dans la théorie des probabilités est notamment exposé dans Hájek (2002, s. 3.3). Pour un traitement du problème de la classe de référence dans le contexte qui est celui de DA, voir notamment Eckhardt (1993, 1997), Bostrom (1997, 2002, ch. 4 pp. 69-72 et ch. 5), Franceschi (1998, 1999). Le point souligné dans Franceschi (1999) peut être interprété comme un traitement du problème de la classe de référence au sein de la théorie de la confirmation.

14 Cf. 1996, p. 260-261.

15 Cf. Leslie (1996, p. 259).

16 Cf. Leslie (1996, pp. 258-9): “The thing to note is that the red ball can be treated either just as a red ball or else as a red-or-green ball. Bayes’s Rule applies in both cases. […] All this evidently continues to apply to when being-red-or-green is replaced by being-red-or-pink, or being-red-or-reddish”.

17 Cet aspect important de l’argument est également souligné dans Delahaye (1996). Il s’agit aussi du thème principal de Sober (2003).

18 Je suis reconnaissant envers Nick Bostrom pou des discussions utiles sur le problème de la classe de référence, ainsi qu’envers Daniel Andler, Jean-Paul Delahaye, John Leslie, Claude Panaccio, Elliott Sober, ainsi qu’un expert anonyme pour le Journal of Philosophical Research, pour des commentaires utiles sur de précédentes versions de cet article.

Ce contenu a été publié dans Philosophie analytique, avec comme mot(s)-clé(s) , , , , . Vous pouvez le mettre en favoris avec ce permalien.