Dialectical monism in Aztec philosophy

224px-Dualmasktlatilco

It is worth mentioning a form of dialectical monism in the ancient Aztec philosophy and especially in the concept of ” Teotl “, which is at the center of Aztec metaphysics and cosmology. Teotl is the expression of an endless alternation of continuous and cyclical oscillation between opposite poles. Teotl is thus characterized by a dual prominent structure, which results from the union of opposites , themselves characterized by complementarity. The dual pairs involved include : the masculine and the feminine, dark and light, order and disorder, hot and cold, life and death, being and non-being etc. The interdependence and higher union of the principles of life and death in Teotl, for example, was represented by Aztec artists of Tlatilco and Oaxaca in masks where one half is alive while the other half died, revealing the skull bones.

Reference: James Maffie, Aztec Philosophy, Internet Encyclopedia of Philosophy

read more

Viewpoint of a pole

Fig3Let us define the concept of point of view related to a given pole of an A/Ā duality: we get then, for example (at the level of the extension/restriction duality) the standpoint by extension, as well as the viewpoint by restriction. Similarly, the qualitative viewpoint or perspective results from it, as well as the quantitative point of view, etc.. (at the level of the qualitative/quantitative duality). Thus, when considering a given object o (either a concrete or an abstract object such as a proposition or a reasoning), we may consider it in relation to various dualities, and at the level of the latter, relative to each of its two dual poles.

The underlying idea inherent to the viewpoint relative to a given duality, or to a given pole of a duality, is that each of the two poles of the same duality, all things being equal, deserve an equal legitimacy. In this sense, if we consider an object o in terms of a duality A/Ā, one should not favour one of the poles with respect to the other. To obtain an objective point of view with respect to a given duality A/Ā, one should place oneself in turn from the perspective of the pole A, and then from that of the pole Ā. For an approach that would only address the viewpoint of one of the two poles would prove to be partial and truncated. The fact of considering in turn the perspective of the two poles, in the study of an object o and of its associated reference class allows to avoid a subjective approach and to meet as much as possible the needs of objectivity.

read more

Principle of dialectical indifference

617px-Gleicharmige_Waage

(Illustration from Wikimedia commons)

(PRINCIPLE OF DIALECTICAL INDIFFERENCE) When considering a given object o and the reference class E associated with it, from the angle of duality A/Ā, all things being equal, it should be given equal weight to the viewpoint of the A pole and the viewpoint of the Ā pole.

The principle of dialectical indifference can be enunciated as follows: if we consider an object o under the angle of a given A/Ā duality, there is no reason to favour the viewpoint from A with regard to the viewpoint from Ā, and unless otherwise resulting from the context, we must weigh equally the viewpoints A and Ā. A direct consequence of this principle is that if one considers the perspective of the A pole, one also needs to take into consideration the standpoint of the opposite pole Ā (and vice versa). The need to consider both points of view, the one resulting from the A pole and the other associated with the Ā pole, meets the need of analysing the object o and the reference class associated with it from an objective point of view. This goal is achieved, as far as possible, by taking into account the complementary points of view which are those of the poles A and Ā. Each of these viewpoints has indeed, with regard to a given duality A/Ā, an equal relevance. Under such circumstances, when only the A pole or (exclusively) the pole Ā is considered, it consists then of a one-sided perspective. Conversely, the viewpoint which results from the synthesis of the standpoints corresponding to both poles A and Ā is of a two-sided type. Basically, this approach proves to be dialectical in essence. In effect, the step consisting of successively analysing the complementary views relative to a given reference class, is intended to allow, in a subsequent step, a final synthesis, which results from the joint consideration of the viewpoints corresponding to both poles A and Ā. In the present construction, the process of confronting the different perspectives relevant to an A/Ā duality is intended to build cumulatively, a more objective and comprehensive standpoint than the one, necessarily partial, resulting from taking into account those data that stem from only one of the two poles.

read more

The Simulation Argument and the Reference Class Problem: the Dialectical Contextualist’s Standpoint

chap31Preprint. I present in this paper an analysis of the Simulation argument from a dialectical contextualist standpoint. This analysis is grounded on the reference class problem. I begin with describing Bostrom’s Simulation Argument step-by-step. I identify then the reference class within the Simulation argument. I also point out a reference class problem, by applying the argument successively to several references classes: aware-simulations, rough simulations and cyborg-type simulations. Finally, I point out that there are three levels of conclusion within the Simulation Argument, depending on the chosen reference class, that yield each final conclusions of a fundamentally different nature.

This preprint supersedes my preceding work on the Simulation argument. Please do not cite previous work.

Comments are welcome.

line_1

December 2016: An updated version of my analysis of the Simulation Argument has appeared in the canadian Philosophiques journal (in French) under the
title: L’argument de la Simulation et le problème de la classe de référence : le point de vue du contextualisme dialectique

read more

Elements of Dialectical Contextualism

Paolo_Veronese - DialecticsPosprint in English (with additional illustrations) of  an article appeared in French in the collective book (pages 581-608) written on the occasion of the 60th birthday of Pascal Engel.

In what follows, I strive to present the elements of a philosophical doctrine, which can be defined as dialectical contextualism. I proceed first to define the elements of this doctrine: dualities and polar contraries, the principle of dialectical indifference and the one-sidedness bias. I emphasize then the special importance of this doctrine in one specific field of meta-philosophy: the methodology for solving philosophical paradoxes. Finally, I describe several applications of this methodology on the following paradoxes: Hempel’s paradox, the surprise examination paradox and the Doomsday Argument.

line_1

Elements of Dialectical Contextualism

In what follows, I will endeavour to present the elements of a specific philosophical doctrine, which can be defined as dialectical contextualism. I will try first to clarify the elements that characterise this doctrine, especially the dualities and dual poles, the principle of dialectical indifference and the one-sidedness bias. I will proceed then to describe its interest at a meta-philosophical level, especially as a methodology to assist in the resolution of philosophical paradoxes. Finally, I will describe an application of this methodology to the analysis of the following philosophical paradoxes: Hempel’s paradox , the surprise examination paradox and the Doomday Argument.

read more

A Two-Sided Ontological Solution to the Sleeping Beauty Problem

eub-sbPreprint published on the PhilSci archive.

I describe in this paper an ontological solution to the Sleeping Beauty problem. I begin with describing the hyper-entanglement urn experiment. I restate first the Sleeping Beauty problem from a wider perspective than the usual opposition between halfers and thirders. I also argue that the Sleeping Beauty experiment is best modelled with the hyper-entanglement urn. I draw then the consequences of considering that some balls in the hyper-entanglement urn have ontologically different properties from normal ones. In this context, drawing a red ball (a Monday-waking) leads to two different situations that are assigned each a different probability, depending on whether one considers “balls-as-colour” or “balls-as-object”. This leads to a two-sided account of the Sleeping Beauty problem.

line_1

A Two-Sided Ontological Solution to the Sleeping Beauty Problem

1. The hyper-entanglement urn

Let us consider the following experiment. In front of you is an urn. The experimenter asks you to study very carefully the properties of the balls that are in the urn. You go up then to the urn and begin to examine its content carefully. You notice first that the urn contains only red or green balls. By curiosity, you decide to take a sample of a red ball in the urn. Surprisingly, you notice that while you pick up this red ball, another ball, but a green one, also moves simultaneously. You decide then to replace the red ball in the urn and you notice that immediately, the latter green ball also springs back in the urn. Intrigued, you decide then to catch this green ball. You notice then that the red ball also goes out of the urn at the same time. Furthermore, while you replace the green ball in the urn, the red ball also springs back at the same time at its initial position in the urn. You decide then to withdraw another red ball from the urn. But while it goes out of the urn, nothing else occurs. Taken aback, you decide then to undertake a systematic and rigorous study of all the balls in the urn.

read more

A Dichotomic Analysis of the Surprise Examination Paradox

eub-sep

English translation of a paper appeared in French in Philosophiques 2005, vol. 32, pages 399-421 (with minor changes with regard to the published version).

This paper proposes a new framework to solve the surprise examination paradox. I survey preliminary the main contributions to the literature related to the paradox. I introduce then a distinction between a monist and a dichotomic analysis of the paradox. With the help of a matrix notation, I also present a dichotomy that leads to distinguish two basically and structurally different notions of surprise, which are respectively based on a conjoint and a disjoint structure. I describe then how Quine’s solution and Hall’s reduction apply to the version of the paradox corresponding to the conjoint structure. Lastly, I expose a solution to the version of the paradox based on the disjoint structure.

line_1

A Dichotomic Analysis of the Surprise Examination Paradox

I shall present in what follows a new conceptual framework to solve the surprise examination paradox (henceforth, SEP), in the sense that it reorganizes, by adapting them, several elements of solution described in the literature. The solution suggested here rests primarily on the following elements: (i) a distinction between a monist and a dichotomic analysis of the paradox; (ii) the introduction of a matrix definition, which is used as support with several variations of the paradox; (iii) the distinction between a conjoint and a disjoint definition of the cases of surprise and of non-surprise, leading to two structurally different notions of surprise.

read more

An Introduction to Analytic Philosophy

intro-phi-a-bookIn this book, Paul Franceschi provides us with an introduction to analytic philosophy. In a concrete way, he chooses to describe forty paradoxes, arguments or philosophical issues that represent so many challenges for contemporary philosophy and human intelligence, for some paradoxes of millennial origin—such as the Liar or the sorites paradox—are still unresolved in the present day. Some other philosophical puzzles, however—such as the Doomsday argument—appeared only recently in the literature. The author strives to introduce us clearly to each of these problems as well as to major attempts that have been formulated to solve them.

“I’m really impressed by this very neat and stimulating book. I highly recommend it both to students for pedagogy and general culture (prisoner’s dilemma, twin-earth, etc.), and to professionals as well for the reference tool and even more generally to those who like to think.”

Julien Dutant, Philotropes, Philosophical blog

The Kindle version is also available.

read more

Home

OLYMPUS DIGITAL CAMERA

This site presents my work in philosophy. It contains published articles, preprints , as well as books. The texts relate to analytic philosophy, semiotics, the study of concepts, cognition and psycho-pathological philosophy.

My works are mainly in analytic philosophy and consist of proposed solutions to some philosophical paradoxes : the Doomsday argument, Hempel’s paradox, Goodman ‘s paradox, the surprise examination paradox, the Sleeping Beauty problem, but also the Black-Leslie paradox of the spheres, etc.. A conceptual tool, the n-universes, which are useful for the study of philosophical problems is also presented.

There are also texts on semiotics and the study of concepts. These texts are based on a specific conceptual tool : the matrices of concepts. Recent applications to the dialectical plan, to  paradigm analysis of a corpus of proverbs , to the analysis of the love-hate indifference triplet of concepts are also presented.

Finally, several texts relate to cognition and cognitive distortions. Additions to the theory of cognitive distortions are exposed, and their applications in the field of psycho-pathological philosophy.

read more

A Solution to Goodman’s Paradox

goodmanPosprint in English (with additional illustrations) of a paper published in French in Dialogue Vol. 40, Winter 2001, pp. 99-123 under the title “Une Solution pour le Paradoxe de Goodman”.
In the classical version of Goodman’s paradox, the universe where the problem takes place is ambiguous. The conditions of induction being accurately described, I define then a framework of -universes, allowing the distinction, among the criteria of a given -universe, between constants and variables. Within this framework, I distinguish between two versions of the problem, respectively taking place: (i) in an -universe the variables of which are colour and time; (ii) in an -universe the variables of which are colour, time and space. Finally, I show that each of these versions admits a specific resolution.

line_1

A Solution to Goodman’s Paradox

Paul Franceschi

p.franceschi@univ-corse.fr

originally published in Dialogue, winter 2001, vol. 40, pp. 99-123

ABSTRACT: In the classical version of Goodman’s paradox, the universe where the problem takes place is ambiguous. The conditions of induction being accurately described, I define then a framework of n-universes, allowing the distinction, among the criteria of a given n-universe, between constants and variables. Within this framework, I distinguish between two versions of the problem, respectively taking place: (i) in an n-universe the variables of which are colour and time; (ii) in an n-universe the variables of which are colour, time and space. Finally, I show that each of these versions admits a specific resolution.

read more